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Spontaneous structure formation in a network of dynamic elements
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To discover the generic behaviors of dynamic networks, we study a coupled map system with variable
coupling strength. It is found that this system spontaneously forms various types of network structure accord-
ing to the parameter values. Depending on the synchronized or desynchronized motion of unit dynamics, the
network structure can be either static or dynamic. The separation of units into two groups, one composed of
units with a large number of outgoing connections and the other units with little outgoing connections, is
observed in dynamic structure. It is revealed that the mechanism for such separation is a positive feedback
between unit and connection dynamics.
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I. INTRODUCTION

Complex networks appear in a variety of systems such
metabolic networks@1#, neural networks@2#, ecological net-
works @3,4#, collaboration networks@4#, sexual networks@5#,
the worldwide web@6#, and so forth. Recent studies on the
complex networks have revealed some generic features
served commonly in a wide range of natural and artific
networks@7#.

Most of these studies are inspired mainly by two wor
concerning the structure of networks: one is the study of
small world effect by Watts and Strogatz@8#, and the other is
the scale-free property by Baraba´si and Albert@9#. Due to the
structural interest in these original studies, the followi
works also focus on the structure of networks, unduly ign
ing the dynamics of network elements.

However, the elements in most realistic networks ha
their own dynamics, and their dynamics have an influence
the formation of the network structure. Here the dynamics
each element and the dynamics of the network structure
mutually related. Such interplay between these two dynam
seems to play a crucial role, especially in the functioning
living and social systems.

By the term dynamic network, we refer to networ
whose structure evolves in time in relation with the dynam
of elements. The aim of the present paper is to discover
generic behaviors of the dynamic networks and to reveal
mechanism of their occurrence, by constructing a sim
model of a dynamic network and analyzing its behavior co
putationally.

To capture the generic properties of dynamic networ
our model should be simple enough to possess only gen
features observed in a variety of dynamic networks. Here
adopt a coupled map with variable coupling strength@10# as
our model because of its simplicity and ability to reprodu
generic behaviors observed in high-dimensional~chaotic!
dynamical systems@11#.

After introducing our model in the following section, w
describe the basic properties of the model in Sec. III. T
behaviors are classified into several phases. From Sec. I
1063-651X/2003/67~4!/046226~14!/$20.00 67 0462
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Sec. VI, we focus only on one specific phase, namely, des
chronized phase, where the structure of the network chan
dynamically in relation with unit dynamics. In Sec. IV, w
define two quantitative measures which reflect the dyna
properties of network structures and classify the type of
networks observed in our model utilizing these measures
Sec. V, the structural properties of each type of network
studied. In Sec. VI, we reveal the mechanism of struct
formation in our network. A summary of the results and d
cussion are given in Sec. VII.

II. MODEL

As mentioned above, we adopt a coupled map system
our model. Letf be the map that governs the dynamics
each unit in the network, andxn

i be the state variable of th
i th unit, where the indexn represents the time step. Add
tionally, let wn

i j be the time dependent strength of the co
nection from unitj to unit i at thenth step. Then, the dynam
ics of unit i are described by the following equation:

xn11
i 5~12c! f ~xn

i !1c(
j

N

wi j f ~xn
j !,

wherec is the parameter that represents the strength of
interaction from other units to the uniti, andN is the number
of units in the system. We use the logistic mapf (x)5ax(1
2x) in the present paper, since it is thoroughly investiga
as a simple model showing periodic dynamics with any
riod as well as chaos.

The above model belongs to the class of models ca
globally coupled map~GCM! @12#. The GCM model with a
constant coupling strengthwi j 51/N, taking identical values
for all ( i , j ), has been studied extensively and intensiv
@13#. The above model is an extension of the GCM to allo
for the change of the coupling strength.

We impose two restrictions on the dynamics of conn
tion strengthwn

i j . First, connections between units who
state variables have similar values are strengthened. Th
an extension of Hebb’s rule to a system with continuous s
©2003 The American Physical Society26-1
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variables. Second, the total weight of connections conver
on a single unit is normalized to be unity. This choice
natural, since in any network some limitation is imposed
the resource to establish and maintain connections betw
units. The competition among connection strengths is ine
table under such a limitation. If there is competition for t
coupling strength among the connections coming into
given element, the above form of normalization of conn
tion strength gives a simple expression of such competit
This choice is also convenient to avoid the divergence
connection strength between synchronized units. We ad
one of the simplest equations which satisfies the above
restrictions, given as follows:

wn11
i j 5

@11dg~xn
i ,xn

j !#wn
i j

(
j 51

N

@11dg~xn
i ,xn

j !#wn
i j

,

where the parameterd represents the degree of plasticity
the connection and takes a value from 0 to 1. We usd
50.1 throughout this paper for simplicity. Dependence of
system’s behavior ond will be discussed later.g is a mono-
tonically decreasing function of the difference between
two arguments. We useg(x,y)5122ux2yu in the present
paper, to assure this monotonicity, but other forms with t
nature yield the same result.

To sum up, our model is described by the following set
equations:

xn11
i 5 f S ~12c!xn

i 1c(
j 51

N

wn
i j xn

j D ,

f ~x!5ax~12x!,

wn11
i j 5

@11dg~xn
i ,xn

j !#wn
i j

(
j 51

N

@11dg~xn
i ,xn

j !#wn
i j

,

g~x,y!5122ux2yu.

For most numerical simulations shown below, we choo
the following initial condition. First, the initial value of self
connectionw0

i i is set to 0. Hence, the self-connections a
kept at 0 at any time stepn. Second, all the remaining con
nection strengths are set to be identical. This means
initially every unit in the system uniformly connects with a
the other units. From the constraint of the normalization,
initial connection strength is determined to be 1/(N21). Fi-
nally, x0

i is randomly chosen from the uniform distributio
between 0 and 1.

III. BASIC PROPERTIES OF THE MODEL

We start our analysis by studying the dependence of
system’s behavior on the values of the parametersa and c.
According to Ref.@12#, the dynamics of globally coupled
maps are generally classified into four phases, i.e., cohe
04622
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phase, ordered phase, partially ordered phase, and de
chronized phase. Differently from the conventional GC
where the connection strengths are fixed, the partially
dered phase does not appear in our model@17#. The phase
diagram of our model against parametersa andc is shown in
Fig. 1.

The behavior for each set of the parameters is alm
independent of the initial conditions. Aside from the initi
condition mentioned above, we have also carried out
simulation starting from random initial configurations fo
connection strengths. From these simulations, the phase
gram shown in Fig. 1~using the homogeneous initial con
nection strengths! is reproduced, although the boundaries b
tween phases are slightly shifted.

In the rest of this section, we briefly describe the dynam
cal properties of units and connections in each phase.

A. Coherent phase

In the coherent phase, all units oscillate synchronou
Since, in our system, the change of the connection streng
proportional to the difference between units’ state variab
the connection strengths do not change in a synchron
state. Before all the units synchronize, the connect
strength changes in the transient. However, the converge
to the synchronized state is so rapid that the connec
change during the transient period is quite small. Hence
the coherent phase, the network structure is static and al
connection strengths are almost the same as the initial
ues. In Fig. 2, the connection matrix in the coherent phas
illustrated.

The stability of the synchronized state can be easily co
puted by the following condition for the split exponent~tan-

FIG. 1. Rough phase diagram of the model against the par
etersa and c, obtained by computing the number of clusters. T
simulation is carried out by changing both of the parameter val
by 0.01. Letters in the figure represent the following:C, coherent
phase;O, ordered phase;D, desynchronized phase.
6-2
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gential Lyapunov exponent! @12#:

lspl5 lnS 12
N

N21
cD1 lim

T→`

1

T (
n51

T

lnu f 8~xn
i !u,0.

Since the dynamics of the connection strength are driven
the difference between the state variables, the network st
ture is also stable if the synchronized state is stable. He
the stability of the network structure is also evaluated by
above condition.

B. Ordered phase

In the ordered phase, units spontaneously form sev
clusters, within which units oscillate synchronously. T
connection strengths between the units in the same clu
are almost the same, while the connection between unit
different clusters vanishes to zero. The connection stren
within a cluster is given by about 1/Nc , due to the normal-
ization condition.

The number of the clusters is 2 near the boundary aga
the coherent phase@see Fig. 3~top!#, and the number in-
creases as the parametera increases or the parameterc de-
creases. The maximum number of the clusters isN/2, which
is taken near the boundary against the desynchronized ph
In this N/2-cluster state, every two units form a pair and th
have connection only between each other. In Fig. 3~bottom!,
the connection matrix of theN/2-cluster state is shown.

The stability of a cluster can be evaluated again by
split exponent. The split exponent of a cluster ofNc units is

lspl5 lnu12~11wi j !cu1 lim
T→`

1

T (
n51

T

lnu f 8~xn
i !u.

The second term the equals Lyapunov exponent for the
x85 f (x). Since, as mentioned above,wi j ;1/(Nc21)
within the cluster, we can get the following expression of t
split exponent

FIG. 2. Connection matrixwi j in the coherent phase. The valu
of wi j is represented by the size of the filled square at thei th row,
j th column. The scale is chosen so that the size of the corresp
ing square is half of the grid size whenwi j 51/(N21). N550, a
53.6, c50.3.
04622
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lspl; lnU12F11
1

~Nc21!GcU1l0 ,

wherel0 is the Lyapunov exponent off (x). Note that the
stability of a cluster depends on the size of the clusterNc .

Especially, for theN/2-cluster state, the split exponent ca
be written as

lspl5 lnu122cu1l0 .

The boundary between the ordered phase and the desyn
nized phase is determined by the equation lnu122cu1l050.

C. Desynchronized phase

In the desynchronized phase, there is no synchroniza
between any pair of units. Unlike the coherent and the
dered phases, the difference between state variables is
and changes in time. Accordingly, the connection streng
also vary in time and the network forms a complex struct

d-

FIG. 3. Connection matriceswi j in the ordered phase, displaye
with the same procedure as in Fig. 2.N550. ~Top! Connection
matrix of the two-cluster state. The scale is chosen so that the
of the corresponding square is half of the grid size whenwi j

51/(N/221). a53.6, c50.2. ~Bottom! Connection matrix of the
N/2-cluster state. The scale is chosen so that the size of the c
sponding square is the same as the grid sizewi j 51. a53.97, c
50.3.
6-3
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with temporal evolution in this phase. Depending on the
rameter values, our model shows three different types of
work structure.

The structure of the first type is similar to theN/2-cluster
state. In this phase, however, differently from the orde
phase, the dynamics of the units forming a pair are not s
chronized, although they are strongly correlated. Connec
strengths are almost fixed but the pairs are not perfe
stable so that the decomposition and the recomposition o
pairs occasionally occur. Furthermore, a few units do
form pairs. For such units, the connection changes drastic
over time. In Fig. 4~top!, a snapshot of the connection m
trix of this network structure is shown.

The structure of the second type looks almost rando
Units are connected randomly, while the symmetry of
connection is very high, i.e., ifwi j is large thenwji is also
large, and vice versa. In this network, unlike the previo
one, the connection strengths frequently change over time
Fig. 4 ~middle!, the connection matrix of this structure
shown.

In the structure of the last type of network, units split in
two groups, one composed of the units emanating a la
number of connections and the other of the units having o
a few connections going out of them. In Fig. 4~bottom!, the
connection matrix of this structure is shown.

IV. QUANTIFICATION OF NETWORK PROPERTIES

Now, we focus our attention only on the networks o
served in the desynchronized phase, because only in
phase does network structure change over time, and ou
terest is in dynamic networks.

In this section, we define two quantitative measures wh
reflect the structural and dynamical properties of each typ
network observed in the desynchronized phase. Utiliz
these measures, we determine the phase diagram for
network structure.

A. Activity of network

Among the three types of network observed in the des
chronized phase, only the first one has an almost static s
ture while the others have active connection dynamics.

As a quantity which reflects this difference, we define t
activity A of the network as follows:

A~ t,tm!5
1

~N21!2

1

tm
(
i , j

(
n5t

t1tm

uwn
i j 2wn21

i j u.

The activityA represents the average change of a connec
strength overtm steps. In the above definition, to discard t
transient,t is the time step when the average is started.

In Fig. 5, the activityA is plotted againsta andc with a
gray scale. A broadband with high activity is visible in th
center of the figure. This band coincides with the area wh
the networks of the second and third types, mentioned in
preceding section, are observed. Outside of this band,
activity is quite low. This area coincides with the area whe
the network of the first type is observed.
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B. Average connection matrix

According to the value of the activityA, the desynchro-
nized phase splits into two areas: one with a network wit
static structure and the other with a dynamic structure.

FIG. 4. Connection matriceswi j of the three types of networks
observed in the desynchronized phase. The scale is chosen s
the size of the corresponding square is the same as the grid
when wi j 51. N550. ~Top! The first type. a53.97, c50.2.
~Middle! The second type.a53.97, c50.15. ~Bottom! The third
type.a53.97, c50.125.
6-4
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SPONTANEOUS STRUCTURE FORMATION IN A . . . PHYSICAL REVIEW E67, 046226 ~2003!
While in the former area only one type of network stru
ture is observed@Fig. 4 ~top!#, in the latter area, two types o
network structure are observed@Fig. 4 ~middle!, ~bottom!#.
To quantify the difference between the latter two networ
we pay attention to the structural property of the network

One way to do this is to consider the average connec
matrix Wi j . Wi j is defined as follows:

Wi j ~ t,tm!5
1

tm
(
n5t

t1tm

wn
i j .

Wi j represents the temporal average ofwi j over tm steps
after thetth step. It gives a network structure averaged o
time.

One can detect the existence of some stable structur
looking at the variance ofWi j over all pairs ofi , j . If con-
nection strengths change randomly in time, allWi j will ap-
proach the same value and the variance ofWi j will tend to 0,
ast t is increased. On the contrary, if the network has so
temporally stable but spatially nonuniform structure, t
variance will remain finite even ift t is increased to infinity.
Since the uniform all-to-all connection structure is never
alized in the desynchronized phase, the variance ofWi j can
be considered as an index of the stability of network str
ture.

Recalling that in the network of the third type, stron
connections tend to concentrate on a few columns@Fig. 4
~bottom!#, we sum upWi j over i to get the total strength o
the outgoing connections of unitj, and consider the varianc
of this total strength over units. We defineWout

i as follows:

Wout
i ~ t,tm!5

1

tm
(
n5t

t1tm

(
j 51

N

wn
ji 5(

j 51

N

Wji ~ t,tm!.

This is the temporal average of the total strength of the o
going connections of uniti over tm steps after thetth step.

We calculate the variance (dWout)
2 of Wout

i over i,

~dWout!
25(

i
~Wout

i 2Wout!
2

with

FIG. 5. Gray scale plot of the activityA(t,tm) of the network,
obtained from the computation of the activity by changing both
the parameters by 0.01.t5105, tm5103.
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Wout
i /N,

and plot it againsta and c with a gray scale. The result i
shown in Fig. 6. The narrow band of the high (dWout)

2 is
seen from the lower left to the upper right of the figure. Th
band coincides with the area where the network of the th
type is observed. Comparing this figure with Fig. 5, it
observed that the lower half of the band of the high activ
corresponds to the narrow band of the high (dWout)

2. The
upper half of the high activity band, where (dWout)

2 is rela-
tively low, coincides with the area where the network of t
second type is observed.

C. Regions

Using the two quantities introduced above, we can div
the desynchronized phase into three regions, with regard
the dynamics and the stability of network structure. We c
these three regions the static region, dynamic region I,
dynamic region II~Fig. 7!.

f
FIG. 6. Gray scale plot of the variance (dWout)

2 of Wout
i(t,tm),

obtained from the computation of the variance by changing both
the parameters by 0.01t5105, tm5103.

FIG. 7. Rough phase diagram with regards to the network st
ture, generated according to Figs. 5 and 6. Letters in the fig
represent the following:S, static region;D1, dynamic region I;D2,
dynamic region II.
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1. Static region

This region is characterized by the low network activ
A. In this region, most units make pairs and each unit
connected only with the partner in the pair. Although th
connection strengths hardly change over time, the decom
sition and the recomposition of the pairs occasionally occ
Besides those units forming pairs, there remain a few u
that do not form pairs. Their connection strengths cha
rapidly over time.

The dynamics of units forming a pair are not synch
nized, but highly correlated, while there is almost no cor
lation between units that belong to different pairs.

2. Dynamic region I

This region is characterized by the high activityA and the
low (dWout)

2. There is no synchronization between any tw
units, and the correlation between units is very low for a
given couple of units. Due to these disordered unit dynam
connection strengths change intensely. Here, the netw
structure seems to be random.

3. Dynamic region II

This region is characterized by the high activityA and the
high (dWout)

2. Similarly to the dynamic region I, there i
neither synchronization nor a significant correlation betwe
any two units. Here the network possesses a tempor
stable structure, although the connection strengths chang
intensely as in dynamic region I.

V. NETWORK STRUCTURE

In this section, we analyze the structure of the netw
quantitatively. For this purpose we map the network struct
to a graph. We digitize each connection strength into a bin
value. If the strength of a connection exceeds 1/(N21), we
assign the value ‘‘1’’ to that connection. Otherwise, the va
‘‘0’’ is assigned. The threshold value 1/(N21) adopted here
is the value which a connection takes when a unit conn
uniformly to all the other units@18#. Hence, the connection
means that the correlation between the units relating to
connections is larger than the average case with a unif
connection. The setV of units and the setE of the connec-
tions with the value 1 define a graph reflecting the struct
of the network in our system. Sincewi j is not always equa
to wji in our model, the resulting graph is a directed grap

A. Global structure

Using this graph, we compute two quantities that refl
the global feature of the network structure: the densityD and
the symmetryS of the graph.

The densityD of a graph is defined as follows:

D~ t !5
1

~N21!2 (
i , j

di j ~ t !,
04622
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di j ~ t !5H 1 S wt
i j >

1

N21D
0 S wt

i j ,
1

N21D .

This densityD represents the proportion of the actual co
nections in the graph to all the possible connections in
graph withN vertices at thetth step.

In Fig. 8, the densityD is plotted againsta andc with a
gray scale. The dependence of the densityD on a and c is
quite similar to that of the activityA. This means that the
density is high in the dynamic regions and low in the sta
region. The difference between the network structure in
dynamic regions I and II is not clear at this point.

The symmetryS of a graph is defined as follows:

S~ t !5

(
i , j

si j ~ t !

(
i , j

di j ~ t !

,

si j ~ t !5H 1 S wt
i j .

1

N21
, wt

ji .
1

N21D
0 ~otherwise!.

The symmetryS represents the proportion of the reciproc
connections to all the connections in the graph at thetth step.

In Fig. 9, the symmetryS is plotted againsta andc with a
gray scale. The dependence of the symmetryS on a andc is
almost opposite to that of (dWout)

2. The symmetry is high in
the dynamic region I and low in the dynamic region
Hence, the networks in the dynamic regions I and II ha
different characteristics not only in the stability of the stru
ture but also in the structure itself.

B. Local connectivity

To reveal a more detailed network structure, we focus
indegree and outdegree of each unit in the graph. Indegre
the number of connections going out of a unit and outdeg
is the number of connections arriving at a unit.

FIG. 8. Gray scale plot of the densityD(t) of the graph mapped
from the network, obtained from the computation of the density
changing both of the parameters by 0.01.t5105.
6-6
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In the following, we explain the structural properties
the networks observed in the three regions in the desync
nized phase according to the analysis of the distribution
indegree and outdegree.

1. Static region

As mentioned above, most units form pairs in this regi
Hence the distributions for both of the indegree and the o
degree are mostly concentrated on the value 1, and ha
very sharp peak at this value.

2. Dynamic region I

In Fig. 10 ~top!, the distributions of the indegree and ou
degree of the network observed in the dynamic region I
shown. The peaks of both distributions are almost at
same position, while the distribution of the indegree ha
smaller variance and a higher peak than the outdegree d
bution. This difference is due to the normalization of the to
incoming connection strength. Both distributions are well a
proximated by the normal distribution~not shown!, which
implies that the units are randomly connected. Note t
these distributions are calculated from snapshots of the
nection matrices. Hence, they carry no information about
temporal aspect of the network structure.

To reveal the temporal properties, we count the indeg
and the outdegree of one arbitrarily chosen unit for a lo
time and compute their distributions. The result is shown
Fig. 10 ~bottom!. Comparing it with the previous figure, on
can easily see that these distributions take almost the s
shape, which implies that the network structure changes
most randomly.

3. Dynamic region II

In Fig. 11, the distributions of the indegree and the o
degree of the network observed in the dynamic region II
shown.

Though the indegree distribution is similar to that in t
dynamic region I, their outdegree distributions are quite d
ferent. The outdegree distribution in the dynamic region I
given by the superposition of two components: one rang
from 0 to about 16, showing exponential decay from t

FIG. 9. Gray scale plot of the symmetryS(t) of the graph
mapped from the network, obtained from the computation of
symmetry by changing both of the parameters by 0.01.t5105.
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peak at 0, and the other from about 16 to about 68, wh
has the shape of a normal distribution with its peak at ab
40.

This implies that units are separated into two groups. T
proportions of the number of the units in the group with t
lower outdegree and that with the higher outdegree to
whole system are 0.82 and 0.18, respectively.

As mentioned above, these distributions tell nothing ab
the temporal change of the network structure. Hence, it is
clear whether the separation of units is stable over time~i.e.,
the groups do not exchange their members with each ot!
or not. To answer this question, we study the evolution
Wout

i .
In Fig. 12, the time series ofWout

i is plotted for all i at
every 104 steps, where the units whoseWout

i at the 107th step
exceed 2 are plotted with red lines and the remaining u
are plotted with green lines. Though the assignment of
color to each unit is determined only by the value ofWout at
the 107th step, almost all of the units in the group with th

e

FIG. 10. Distributions of the indegree and outdegree of
graph. Solid line: outdegree. Broken line: indegree.N5100, a
53.97, c50.15. ~Top! Distributions of the indegree and outdegre
of the units in the graph mapped from the networks at the 106th step
of 100 trials with different initial conditions.~Bottom! Distributions
of the indegree and outdegree of an arbitrarily chosen unit in
graph mapped from the networks at the (1.03106)th to the (2.0
3106)th step.
6-7



ge
he
av
io

ta
io
th

total
the

at

-
-
s,
ys
en
e

ic
, in

on
to
d.

h is
om-
the
unit
de-

lane

ni

le

ni

J. ITO AND K. KANEKO PHYSICAL REVIEW E 67, 046226 ~2003!
higher outdegree are plotted with red lines over much lon
time steps. This means that most of the units with hig
Wout

i values at the early stage of the separation still h
higherWout

i values. Hence it is concluded that the separat
of units is highly stable.

Next we confirm the separation of units more quanti
tively by defining an appropriate measure for the separat
Here we define an autocorrelation function relating to
separation of units in the following way.

First, we define a binary variablebn
i , which takes 1 if the

unit i belongs to the group with higher outdegree, and21
otherwise, i.e.,

bn
i 55 1 S (

j 51

N

wn
ji >1.0D

21 S (
j 51

N

wn
ji ,1.0D .

FIG. 11. Distributions of the indegree and outdegree of the u
in the graph mapped from the networks at the 106th step of 100
trials with different initial conditions. Note the logarithmic sca
used in the vertical axis.N5100, a53.97, c50.125.

FIG. 12. ~Color! Temporal evolution ofWout
i (t,tm). Each line

represents the time series ofWout
i . The time series for alli are

superimposed. The red lines correspond to the units whoseWout
i at

the 107th step exceed 2 and the green lines to the rest of the u
tm5105, N5100,a53.97,c50.125.
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The threshold value 1.0 used here is the average of the
outgoing connection strength of a unit. Then, we define
autocorrelation functionCsep betweenbn

i and bn1t l

i as fol-

lows:

Csep~ t,tm,t l!5
1

N (
i 51

N

Csep
i ~ t,tm,t l!,

Csep
i ~ t,tm,t l!5

(
n5t

t1tm

bn
i bn1t l

i

(
n5t

t1tm

bn
i 2

5
1

tm
(
n5t

t1tm

bn
i bn1t l

i .

We can measure the stability of the separation by looking
how Csep decays ast l gets larger.

The plot of Csep againstt l is shown in Fig. 13. The de
pendence ofCsep on t l in the dynamic region I and the dy
namic region II is drawn with the solid and the broken line
respectively. In the dynamic region II, the correlation deca
very slowly and it remains very strong, namely, 0.84, ev
for the lag of 107 steps, while in the dynamic region I, th
correlation decays to almost zero within 106 steps. Hence,
the separation of the units is highly stable in the dynam
region II, while the separation is unstable, or never occurs
the dynamic region I.

C. Temporal evolution of the network structure

In this section, we study the time course of the formati
of the network structure in more detail. As a simple way
illustrate network structure, we adopt the following metho
First, after the temporal evolution for certain steps, a grap
generated with the method introduced above. Then, we c
pute the indegree and the outdegree of each unit from
graph, and calculate their average separately for each
over a certain period of time steps. These averages of in
gree and outdegree are plotted on a two-dimensional p

ts

ts.

FIG. 13. Plot ofCsep(t,tm ,t l) againstt l . Note the logarithmic
scale used in the horizontal axis.t5106, tm5104. N5100. Solid
line: dynamic region I (a53.97,c50.15). Broken line: dynamic
region II (a53.97,c50.125).
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with the abscissa for indegree and the ordinate for outdeg
We call this type of plot a ‘‘degree scattergram’’ here. W
study the temporal change of the network structure from
degree scattergrams for different time spans.

In Fig. 14, the degree scattergrams of the network in
dynamic region II are plotted for different time spans. In t
initial state, all units have the same indegree and outdeg
namely,N21. Right after the start of the simulation, ind
gree and outdegree rapidly decrease. In the plot over 0–1
steps@Fig. 14~a!#, indegree and outdegree for each unit sc
ter around 20. The average of both degrees keeps decre
slowly, while the variance of the outdegree gets larger a
larger @Figs. 14~b! and 14~c!.# The distribution of outdegree
still gets broader after the 10 000th step, while the aver
and the variance of the indegree get smaller@Figs. 14~d!–
14~f!#. Throughout this process, there exists strong posi
correlation between indegree and outdegree.

From about the 50 000th step, units start to split into t
groups@Figs. 14~e! and 14~f!.#. The separation gets cleare
with time. In Fig. 15, the degree scattergram for the period
1000 steps starting from the 106th step is shown. The sepa

FIG. 14. Degree scattergrams of the network in the dyna
region II.N550, a53.97,c50.125.~a! From the 0th to the 1000th
step.~b! From the 1000th to the 2000th step.~c! From the 5000th to
the 6000th step.~d! From the 10 000th to the 11 000th step.~e!
From the 50 000th to the 51 000th step.~f! From the 100 000th to
the 101 000th step.
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ration of the units is clearly seen.
Next, we show the degree scattergrams of the networ

the dynamic region I in Fig. 16. As in the dynamic region
indegree and outdegree slowly decrease@Figs. 16~a!–16~c!#.
However, the distribution of the points is sharper than in
dynamic region II. After slowly decreasing for a while@Figs.
16~b! and 16~c!#, the degrees hardly change their distrib
tions after the 10 000th step@Figs. 16~d!–16~f!#.

The positive correlation between indegree and outdeg
is observed again, though it is much weaker than in the
namic region I. The existence of such a correlation in t
region is natural, considering the high symmetry of the n
work in this region. Still, the deviation from the perfect sym
metry, i.e., the deviation of the points from the line whe
outdegree is equal to indegree drawn in Fig. 16~f!, is more
interesting. The units with larger outdegrees tend to tak
much larger outdegree, which suggests the existence
positive feedback mechanism to amplify the deviation
outdegree from the average.

VI. MECHANISM OF STRUCTURE FORMATION

In this section we reveal the relationship between u
dynamics and the formation of the network structure.

In this section, we fix the parametera to 3.97 and con-
sider the dependence of the network structure only on
parameterc, for simplicity. Needless to say, the results draw
are applicable to the case with the other values ofa.

In Fig. 17, the dependence of the activityA of the network
and (dWout)

2 on c is shown fora53.97. From these figures
it can be seen that, fora53.97, the static region lies in th
intervals 0,c&0.075 and 0.19&c, the dynamic region I in
the interval 0.145&c&0.19, and the dynamic region II in th
interval 0.075&c&0.145.

A. Boundary between the static and the dynamic regions

First, we study how the boundary between the static a
the dynamic regions is determined in relation to the u
dynamics.

As mentioned above, most units form pairs in the sta
region. The units forming a pair have connections only b

ic

FIG. 15. Degree scattergram of the network in the dynam
region II for the period of 1000 steps starting from the 106th step.
Note that the scales in both axes are different from those in Fig.
N550, a53.97,c50.125.
6-9
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tween each other. Accordingly an interaction between dif
ent pairs hardly exists. Hence, we can roughly grasp the
havior of the whole system in the static region by looki
only at the dynamics of a single pair. The dynamics o
single pair obeys the following equations:

xn11
0 5 f „~12c!xn

01cxn
1
…,

xn11
1 5 f „~12c!xn

11cxn
0
…,

where xn
0 and xn

1 represent the state variables of the un
forming a pair.

In Fig. 18, the bifurcation diagram of the dynamics of
pair againstc for a53.97 is shown. The difference betwee
xn

0 and xn
1 is plotted againstc within the interval 0,c

,0.3. Forc*0.223, the difference is 0, which means th
the dynamics of the units are synchronized. This rangec
corresponds to the ordered phase. Needless to say, the
val 0,c&0.223 corresponds to the desynchronized phas

FIG. 16. Degree scattergrams of the network in the dyna
region I. N550, a53.97,c50.15. ~a! From the 0th to the 1000th
step.~b! From the 1000th to the 2000th step.~c! From the 5000th to
the 6000th step.~d! From the 10 000th to the 11 000th step.~e!
From the 50 000th to the 51 000th step.~f! From the 100 000th to
the 101 000th step. The broken line represents the line where
degree is equal to indegree.
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In the intervals 0,c&0.075 and 0.185&c&0.223, which
lie within the desynchronized phase, the difference betw
the two units is not zero but changes chaotically over tim
However, it stays close to zero over a large proportion
time steps, as can be seen from the dense points around
in Fig. 18. During the time steps satisfyingxn

0'xn
1 , the cou-

pling between the two units is amplified, which overcom
the depression of the coupling during the time steps wh
the difference is large. Hence the pairing structure is sta
here. The static region coincides with these intervals.

On the other hand, in the interval 0.075&c&0.185, the
difference takes much larger values. In particular, in the
terval 0.13&c&0.18, it shows period-2 oscillation. This i
due to the antiphase oscillation of the two units. Such
antiphase oscillation, however, is observed only when
isolate a single pair from the system. In the original syst
where the connection strengths can vary, if such an antiph

ic

ut-

FIG. 17. Dependence of the activityA(t,tm) of the network
~top! and the variance ofWout

i (t,tm) ~bottom! on c. t5105, tm

5103, a53.97.

FIG. 18. Bifurcation diagram of the dynamics of a pair fora
53.97. The difference betweenxn

0 andxn
1 is plotted againstc.
6-10



rm
th
ar
ls

io

n
bl
dy

i
e
r
p

nd

al
re
te

in

es

th
p

th
te

re
ne

vice
each
ch

e
nit

e

its.
flu-

e
Hs.
all
now
in

of

se
.

e
hat
the

H

e-

te
ol
h

tio
f

SPONTANEOUS STRUCTURE FORMATION IN A . . . PHYSICAL REVIEW E67, 046226 ~2003!
oscillation occurred, the connection between the units fo
ing the pair would be weakened rapidly, which results in
decomposition of the pair. Hence, in this interval, pairs
unstable. The dynamic regions correspond to this interva

B. Boundary between the dynamic regions I and II

Next, we study the boundary between the dynamic reg
I and the dynamic region II.

In the dynamic regions, each unit is connected to ma
other units in a complex manner. Therefore, it is impossi
to estimate the whole system’s behavior only from the
namics of some particular units. Here, we trace the dynam
of an arbitrarily chosen unit, compute the correlation b
tween the chosen unit and the other units’ dynamics ove
short time period, namely ten steps, at every step, and
their temporal change.

In Fig. 19, the dynamics of an arbitrarily chosen unit a
its correlations with the other units in the dynamic region
are shown. The correlations are plotted in a color sc
where green or red represents a positive or negative cor
tion, respectively, and the brightness of the color indica
the magnitude of the correlation.

The temporal change in the correlations has the follow
characteristics.

~1! A strong positive~or negative! correlation lasts for a
certain number of steps, followed by a short period with
weak correlation.

~2! After this period, the sign of the correlation chang
for most cases.

The simultaneous appearance of the short period wi
weak correlation for all units is accompanied by the a
proach of the units’ state variables to the~unstable! fixed
point of the logistic map (0.748 . . . ). Note that the dynam-
ics of the logistic map here are two-band motions, i.e.,
unit takes values larger or smaller than the fixed point al

FIG. 19. ~Color! ~Top! Temporal change of the correlation b
tween an arbitrarily chosen unit~unit 1! and the other units in the
system. The correlations between units’ dynamics in the past
steps are plotted in a color scale at every step. Green and red c
correspond to positive and negative correlations, respectively, w
the brightness of the colors shows the strength of the correla
N550, a53.97,c50.15. ~Bottom! Time series of the dynamics o
the chosen unit~unit 1 in the top figure!.
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nately. According to the phase of this oscillation, units a
naturally separated into two groups: when the units of o
group take high values, the others take low values, and
versa. This separation, however, is not stable because
unit sometimes fails to cross over the fixed point, whi
turns the phase to the opposite.

The period with weak a correlation is nothing but th
movement of a unit from one group to the other. As a u
switches to the other group of the opposite phase~i.e., from
high-low-high-••• to low-high-low-•••), the sign of the cor-
relation changes@19#.

We call this movement of a unit from one group to th
other a ‘‘trans-group hopping’’~TGH!. TGH is closely re-
lated to the temporal change in correlations between un
The dynamics of TGH are expected to have a strong in
ence on the formation of network structures.

To investigate the dynamic characteristics of TGH, w
focus on the average interval between two successive TG
The intervals are measured in the ordinary GCM, where
connection strengths are fixed and identical, because we
want to obtain the expected value of the interval of TGH
the network with a certain structure.

In Fig. 20~top!, the dependence of the average interval
TGH on c is plotted, as well as the dependence of (dWout)

2

on c. The average interval of TGH shows a rapid increa
around c50.15, where (dWout)

2 shows a rapid decrease
This value ofc is nothing but the transition point from th
dynamic region II to the dynamic region I. This suggests t
the change in the average interval of TGH leads to

FIG. 20. ~Top! The dependence of the average interval of TG
and (dWout)

2 on c. ~Bottom! Bifurcation diagram of the dynamics
of a unit in the ordinary GCM.~All connection strengths are fixed
and identical.!
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change in the network structure from the region I to II, whi
will be discussed below.

To see what change in unit dynamics causes the sud
change in the TGH frequency, we plot the bifurcation d
gram of a unit in the ordinary GCM, which is used to calc
late the average TGH interval, againstc for a53.97 in Fig.
20 ~bottom!.

For c*0.15, the unit shows a two-band chaos and har
takes a value around the fixed point. Hence, it can be
that TGH hardly occurs in the two-band chaos state. In f
the average interval of TGH is very long here. Aroundc
50.15, band merging occurs and the unit shows a sin
band chaos forc&0.15, and the average interval of TG
rapidly decreases. Therefore, it can be concluded that
sudden change of the TGH frequency is caused by the b
cation of the unit dynamics from the two-band chaos to
single-band chaos.

C. Feedback between dynamics and structure

In this section, we study the relationship between u
dynamics and the formation of network structure, focus
on the relationship between TGH and the structure forma
in the dynamic region II.

Here we compute the average interval between two s
ceeding TGHs of each unit in the network. The TGH interv
of each unit is measured with the following method. Aft
discarding the transient over the firstt f steps, we fix the
connection strength, allowing only for the evolution of th
state variables. Then we measure the TGH intervals of e
unit for a certain time period and compute the average se
rately for each unit over the period.

We plot the obtained average interval againstWout
i for

each unit to investigate the influence of the network struct
on unit dynamics. The plots for six different values oft f are
shown in Fig. 21. Initially, the intervals are almost the sa
for all units @Fig. 21~a!#. Then, the intervals start to differ b
units @Figs. 21~b!–21~d!#, where a positive correlation be
tweenWout

i and the intervals is observed. A unit with a larg
Wout

i value has a smaller rate of TGH. At later times, t
correlation gets weaker@Figs. 21~e! and 21~f!#. Note that the
period when the correlation betweenWout

i and the TGH in-
tervals is strongest coincides with the period when the c
relation between indegree and outdegree is strong
namely, from the 5000th step to the 10 000th step@Figs.
14~c! and 14~d!#.

This observation shows how network structures influe
the frequency of TGH. Next, we consider the opposite infl
ence, i.e., the influence of unit dynamics on the formation
the network structure. Here we measure the correlation
tween units, instead of the network structure, since the c
nection between units with a strong correlation is amplifi
in our model.

We measure the average correlationCi of unit i with all
the other units’ dynamics, defined as follows:

Ci5
1

N21 (
j Þ i

u^xn
i xn

j &2^xn
i &^xn

j &u

A^xn
i 2&2^xn

i &2A^xn
j 2&2^xn

j &2
.

Ci is computed by fixing the connection as mentioned abo
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In Fig. 22, the average correlationCi is plotted against the
average interval of TGH fort f510 000. There is a clea
relationship betweenCi and the TGH interval. A unit with a

FIG. 21. Plot of the average intervals of TGH againstWout
i .

Each point in a figure corresponds to each unit.N550, a
53.97,c50.125. ~a! t f5100. ~b! t f51000. ~c! t f55000. ~d! t f

510 000. ~e! t f550 000. ~f! t f5100 000.

FIG. 22. Plot of the average correlationCi against the average
interval of TGH. Each point in the figure corresponds to each u
t f5104, N550, a53.97,c50.125.
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SPONTANEOUS STRUCTURE FORMATION IN A . . . PHYSICAL REVIEW E67, 046226 ~2003!
longer TGH interval has a stronger average correlation.
causeCi gives a measure of the degree of the increase
connections from a unit, this result means that a unit wit
longer TGH interval is more likely to strengthen its conne
tions.

Now, we have confirmed the bidirectional influence b
tween unit dynamics and the formation of the network str
ture. A unit with a smaller TGH rate grows its connectio
more rapidly, and a unit with stronger connections decrea
the rate of TGH. This mutual reinforcement amplifies t
difference among the connection strengths of units. One c
sequence of this amplification is the separation of conn
tions in the dynamic region II.

In the dynamic region I, the correlation among units
generally strong, as is confirmed by the long TGH inter
@Fig. 20~top!#. Hence, the units are kept from separating in
groups. The consequence of the amplification is seen on
the deviation of the indegree and outdegree from per
symmetry.

In the dynamic region II, the correlation among units
weak due to the frequent TGH. Therefore, the amplificat
of the difference among the connection strengths of u
works effectively, which results in the separation of un
into the two groups. Now the origin of this separation
understood as the positive feedback process between
dynamics and network structure.

VII. SUMMARY AND DISCUSSION

We studied basic properties of coupled maps with varia
connection strengths, by adopting a version of globa
coupled maps~GCM’s! as our model. Differently from the
ordinary GCM, our model does not have the partially
dered phase in the parameter space. This is due to the s
lization of clusters by the change of connections. In o
model, once a cluster is formed, its interaction with the r
of the system tends to vanish because the connections
tween units within and out of the cluster are weakened. T
stabilizes the clusters.

In the coherent and the ordered phase, connec
strengths are fixed asymptotically because of the synchr
zation between units. In the desynchronized phase, the
no synchronization between any pair of units, and the c
nection strength can change in time. In spite of chaotic
namics of units, however, connection matrix has a cer
structure.

We classified the network structure into three types, a
partitioned the desynchronized phase into three regions,
the static region, the dynamic region I, and the dynamic
gion II, corresponding to each network structure. In the st
region, most of the units form a pair, and a unit in a pair
connected only with its partner. Change of connect
strengths is slight and the decomposition and recompos
of pairs hardly occur. In the dynamic region I, units are co
nected in a random manner and temporal change of con
tions is large. In the dynamic region II, units split into tw
groups: one group composed of units with a large numbe
outgoing connections and the other units with a few outgo
connections. Temporal change of connections is large a
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the dynamic region I but the separation of units is stable o
time.

Boundaries between the regions are related to the cha
in the type of unit dynamics. Across the boundary betwe
the static region and the dynamic regions, the stability
antiphase oscillating dynamics changes. Switching of
phase of two-band oscillations appears in the dynamic
gions, leading to trans-group hopping~TGH!. The boundary
between the dynamic regions I and II is given by the chan
in the frequency of TGH.

The mechanism of the structure formation in the dynam
regions is clarified as a mutual reinforcement between
unit dynamics and the connection dynamics. Within the u
dynamics, correlations with other units start to differ b
units, leading to the difference in connection strengths.
turn, this difference in connection strengths leads to the
ference in TGH frequency among units, which leads to
difference in correlations. Hence, the differences among c
nection strengths are amplified, which results in the sep
tion of units in the dynamic region II.

In this mechanism of structure formation, it is essent
that the unit dynamics have the two states characterized
the phase of oscillation. Here, the rate of the change betw
the states, rather than the values of the unit variables
important for the structure formation. We expect that th
observation can be applied to any network system with u
dynamics. Indeed, a network of units with excitable sta
and variable connection strength shows unit separation of
same kind as in the present model, in spite of the signific
difference in the unit dynamics. In our model~and this net-
work of excitable states!, unit dynamics take only two pos
sible states that are clearly distinguished. What kind of n
work structure is formed in the system composed of un
with multiple states is an interesting question.

Throughout this paper, we have fixed the value ofd to
0.1. Sinced represents the degree of plasticity of the co
nection, it is assumed that the stability of the separation
pends on the value ofd. In Fig. 23,Csep is plotted againstd
for different t l . For d larger than 0.5,Csepdecays to almost
zero, while for d smaller than 0.5, a finite value ofCsep

FIG. 23. Plots ofCsep(t,tm ,t l) againstd for different values of
t l . t5106, tm5104. N5100.
6-13
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J. ITO AND K. KANEKO PHYSICAL REVIEW E 67, 046226 ~2003!
remains for significantly larget l , namely, 106 steps@20#.
This result means that a dynamic network with a highly pl
tic connection change is unable to preserve structural in
mation.

The separation of units into the two groups means
appearance of units with much more influence on the dyn
ics of other units. This can be regarded as the spontan
emergence of the ‘‘controlling part’’ within the system. Su
emergence may be related to the origins of hierarchy, d
sion of labor, and leadership in some living and social s
tems. Indeed, because of the simplicity of the model and
universality among globally coupled maps, it is expected t
such an influential group of units generally emerges in n
works whose connections change in a manner governe
the relationships between its dynamic elements.

As discussed in Ref.@15#, one example of such network
is the neural network of newborn organisms. Here we qu
another example, i.e., networks of communication. With
growth of mass communication and the Internet, it is gett
easier to broadcast information, while the cost of filtering
significant information from the large amount of useless
formation is getting larger and larger. Since, in such sit
tions, one cannot examine all the information available
becomes necessary to focus attention on a certain por
This is the situation where our model seems well suit
Here, the emergence of the influential group may corresp
-
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to the emergence of opinion leaders. Such a correspond
seems to suggest that leadership in a group can em
through the dynamics of a relationship among the memb
even if there is no difference among their personalities.

Finally, we note that the separation of units into the tw
groups leads to the robustness of the network against ran
failures. In Ref.@16#, Albert et al. showed that scale-free
networks are highly tolerant against random failures, and
cussed that this robustness of scale-free networks is roote
their extremely inhomogeneous connectivity distributio
where the majority of nodes have only a few links. The sa
type of inhomogeneity of connectivity is also observed in o
system, implying such a robustness against random failu
Albert et al. used the model of preferential attachment
generate scale-free networks. In their model, a new edg
connected preferentially to the units with high connectivi
Though we did not explicitly adopt this kind of rule fo
connection change in our model, a connection change
similar nature spontaneously emerged from the interplay
tween unit and connection dynamics. The feedback mec
nism of the separation of units in our model may supply
dynamical basis for the preferential attachment in dynam
growing networks@21#.
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