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Spontaneous structure formation in a network of dynamic elements
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To discover the generic behaviors of dynamic networks, we study a coupled map system with variable
coupling strength. It is found that this system spontaneously forms various types of network structure accord-
ing to the parameter values. Depending on the synchronized or desynchronized motion of unit dynamics, the
network structure can be either static or dynamic. The separation of units into two groups, one composed of
units with a large number of outgoing connections and the other units with little outgoing connections, is
observed in dynamic structure. It is revealed that the mechanism for such separation is a positive feedback
between unit and connection dynamics.
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[. INTRODUCTION Sec. VI, we focus only on one specific phase, namely, desyn-
chronized phase, where the structure of the network changes
Complex networks appear in a variety of systems such agynamically in relation with unit dynamics. In Sec. IV, we
metabolic network$1], neural network$2], ecological net- define two quantitative measures which reflect the dynamic
works[3,4], collaboration networkp4], sexual network§s], ~ Properties of network structures and classify the type of the
the worldwide welf6], and so forth. Recent studies on thesenetworks observed in our model utilizing these measures. In
complex networks have revealed some generic features of€C. V, the structural properties of each type of network are
served commonly in a wide range of natural and artificiaiStudied. In Sec. VI, we reveal the mechanism of structure
networks[7]. formation in our network. A summary of the results and dis-
Most of these studies are inspired mainly by two worksCUSsion are given in Sec. VIl.
concerning the structure of networks: one is the study of the
small world effect by Watts and Strogd@&], and the other is Il. MODEL

the scale-free property by Barathand Albert9]. Due to the As mentioned above, we adopt a coupled map system as

structural interest in these original studies, the foIIc_)WlngOur model. Letf be the map that governs the dynamics of
works also focus on the structure of networks, unduly IgNOr-__ 1 unit in the network and, be the state variable of the
ing the dynamics of network elements. ’

However, the elements in most realistic networks havé-,th unit, wheirje the ind(_em represents the time step. Addi-
their own dynamics, and their dynamics have an influence of{on2lly, letwy be the time dependent strength of the con-
the formation of the network structure. Here the dynamics of?€ction from unif to uniti at thenth step. Then, the dynam-
each element and the dynamics of the network structure afl€S Of uniti are described by the following equation:
mutually related. Such interplay between these two dynamics N
seems to play a crucial role, especially in the functioning of i1 [ £ (vl
living and F;oé/ial systems. ° Y 9 Xnr1=(1 C)f(Xn)+C; wlf(xq),

By the term dynamic network, we refer to networks
whose structure evolves in time in relation with the dynamicswherec is the parameter that represents the strength of the
of elements. The aim of the present paper is to discover th#teraction from other units to the unijtandN is the number
generic behaviors of the dynamic networks and to reveal thef units in the system. We use the logistic migp) =ax(1
mechanism of their occurrence, by constructing a simple=X) in the present paper, since it is thoroughly investigated
model of a dynamic network and analyzing its behavior com-as a simple model showing periodic dynamics with any pe-
putationally. riod as well as chaos.

To capture the generic properties of dynamic networks, The above model belongs to the class of models called
our model should be simple enough to possess only gener@@obally coupled magGCM) [12]. The GCM model with a
features observed in a variety of dynamic networks. Here wgonstant coupling strength'’ = 1/N, taking identical values
adopt a coupled map with variable coupling strerdi] as  for all (i,j), has been studied extensively and intensively
our model because of its simplicity and ability to reproduce[13]. The above model is an extension of the GCM to allow
generic behaviors observed in high-dimensioraiaotio ~ for the change of the coupling strength.
dynamical systemgl1]. We impose two restrictions on the dynamics of connec-

After introducing our model in the following section, we tion strengthwy . First, connections between units whose
describe the basic properties of the model in Sec. lll. Thestate variables have similar values are strengthened. This is
behaviors are classified into several phases. From Sec. IV t&n extension of Hebb's rule to a system with continuous state
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variables. Second, the total weight of connections conversing 1
on a single unit is normalized to be unity. This choice is
natural, since in any network some limitation is imposed on

the resource to establish and maintain connections between 0.8 |
units. The competition among connection strengths is inevi-

table under such a limitation. If there is competition for the

coupling strength among the connections coming into a 06 |
given element, the above form of normalization of connec-

tion strength gives a simple expression of such competition. €
This choice is also convenient to avoid the divergence of
connection strength between synchronized units. We adopt
one of the simplest equations which satisfies the above two
restrictions, given as follows:
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where the parametef represents the degree of plasticity of
the connection and takes a value from 0 to 1. We &se

=0.1 throughout this paper for simplicity. Dependence of the FIG. 1. Rough phase diagram of the model against the param-
system'’s behavior 0@ will be discussed lateg is a mono- eFersa .and.c, obtglned by computllng the number of clusters. The

tonically decreasing function of the difference between itsz';“(‘)"gzoEéft:;rz'ﬁczh‘;“;igzrghrae';?;”s%:tc’::eo‘;;ngw‘?g"f‘gﬁge‘ﬁ'”es
two arguments. We usg(x,y)=1-2|x—y| in the present o . :

paper,gto assure this nswg()(no¥3nicity, k|)ut gtlher formz with thiéOhase;o' ordered phase), desynchronized phase.

nature yield the same result. .
To sum up, our model is described by the following set ofPh@se, ordered phase, partially ordered phase, and desyn-
chronized phase. Differently from the conventional GCM,

equations: - i )
where the connection strengths are fixed, the partially or-
' ' N dered phase does not appear in our mgdél. The phase
X =f (1—c)xh+c> wilxl |, diagram of our model against parameta@ndc is shown in
=1 Fig. 1.
The behavior for each set of the parameters is almost
f(x)=ax(1-x), independent of the initial conditions. Aside from the initial
o condition mentioned above, we have also carried out the
i [1+ 59(x;,, %)) w,! simulation starting from random initial configurations for
Whi1= R ' connection strengths. From these simulations, the phase dia-
> [1+8g(x,x ) wl gram shown in Fig. Xusing the homogeneous initial con-
4 n*n n . . .
=1 nection strengthss reproduced, although the boundaries be-

tween phases are slightly shifted.
9(x,y)=1-2[x—yl. In the rest of this section, we briefly describe the dynami-

) ) ) cal properties of units and connections in each phase.
For most numerical simulations shown below, we choose

the following initial condition. First, the initial value of self-

connectionwy is set to 0. Hence, the self-connections are
kept at 0 at any time step. Second, all the remaining con- In the coherent phase, all units oscillate synchronously.
nection strengths are set to be identical. This means th&ince, in our system, the change of the connection strength is
initially every unit in the system uniformly connects with all proportional to the difference between units’ state variables,
the other units. From the constraint of the normalization, théhe connection strengths do not change in a synchronized

A. Coherent phase

initial connection strength is determined to beNlA1). Fi-  state. Before all _the units _synchronize, the connection
nally, x, is randomly chosen from the uniform distribution strength changes in the transient. However, the convergence
between 0 and 1. to the synchronized state is so rapid that the connection

change during the transient period is quite small. Hence, in

the coherent phase, the network structure is static and all the

connection strengths are almost the same as the initial val-
We start our analysis by studying the dependence of thaes. In Fig. 2, the connection matrix in the coherent phase is

system’s behavior on the values of the paramegeasidc.  illustrated.

According to Ref.[12], the dynamics of globally coupled The stability of the synchronized state can be easily com-

maps are generally classified into four phases, i.e., cohereputed by the following condition for the split expone(ian-

Ill. BASIC PROPERTIES OF THE MODEL
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FIG. 2. Connection matrix/' in the coherent phase. The value "
of w'l is represented by the size of the filled square afitheow, ‘
jth column. The scale is chosen so that the size of the correspond-
ing square is half of the grid size whevil=1/(N—1). N=50, a
=3.6,¢c=0.3.

gential Lyapunov exponenf12]:

1 T
+ lim = In|f’(x})|<O0.
T—oo n=1

N
Agp=In| 1— mc

Since the dynamics of the connection strength are driven by
the difference between the state variables, the network struc- EeEE
ture is also stable if the synchronized state is stable. Hence, v H =t
the stability of the network structure is also evaluated by the R AR PR
above condition.

B ‘4“‘ T 0 ‘

FIG. 3. Connection matrices' in the ordered phase, displayed
with the same procedure as in Fig. I2=50. (Top) Connection
matrix of the two-cluster state. The scale is chosen so that the size

In the ordered phase, units spontaneously form severgk the corresponding square is half of the grid size wivh
clusters, within which units oscillate synchronously. The=1/(N/2—-1). a=3.6, c=0.2. (Bottom) Connection matrix of the
connection strengths between the units in the same cluste2-cluster state. The scale is chosen so that the size of the corre-
are almost the same, while the connection between units isponding square is the same as the grid sie=1. a=3.97, ¢
different clusters vanishes to zero. The connection strength0.3.
within a cluster is given by aboutM{, due to the normal-
ization condition.

The number of the clusters is 2 near the boundary against Agpr=In
the coherent phasksee Fig. 3(top)], and the number in-
creases as the parameteincreases or the parametede-  where)\, is the Lyapunov exponent df(x). Note that the
creases. The maximum number of the clustefd/s which  stability of a cluster depends on the size of the clubter
is taken near the boundary against the desynchronized phase.Especially, for theN/2-cluster state, the split exponent can
In this N/2-cluster state, every two units form a pair and theype written as
have connection only between each other. In Figh@&tom),
the connection matrix of thdl/2-cluster state is shown. Nspi= In|1—2¢|+\o.

The stability of a cluster can be evaluated again by the
split exponent. The split exponent of a clustemMgf units is T_he boundary betweer_l the ordered phas_e and the desynchro-
nized phase is determined by the equatida-+2c|+\,=0.

B. Ordered phase

1- C|+\g,

Y NCD

.
T .
Ngp=In[1—(1+w")c[+ lim T 21 In|f'(xp)]. C. Desynchronized phase
Tl =

In the desynchronized phase, there is no synchronization
The second term the equals Lyapunov exponent for the malpetween any pair of units. Unlike the coherent and the or-
x'=f(x). Since, as mentioned abovay'~1/(N,—1) dered phases, the difference between state variables is finite
within the cluster, we can get the following expression of theand changes in time. Accordingly, the connection strengths
split exponent also vary in time and the network forms a complex structure
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with temporal evolution in this phase. Depending on the pa- ‘ ‘ HH
rameter values, our model shows three different types of net- e EEEEEmEEaEs
work structure. R .

The structure of the first type is similar to th&#2-cluster EEENEEENEEEEEEEE, mEE
state. In this phase, however, differently from the ordered e E
phase, the dynamics of the units forming a pair are not syn-
chronized, although they are strongly correlated. Connection
strengths are almost fixed but the pairs are not perfectly
stable so that the decomposition and the recomposition of the
pairs occasionally occur. Furthermore, a few units do not
form pairs. For such units, the connection changes drastically
over time. In Fig. 4(top), a snapshot of the connection ma-
trix of this network structure is shown.

The structure of the second type looks almost random.
Units are connected randomly, while the symmetry of the
connection is very high, i.e., " is large therw!' is also
large, and vice versa. In this network, unlike the previous
one, the connection strengths frequently change over time. In
Fig. 4 (middle), the connection matrix of this structure is
shown.

In the structure of the last type of network, units split into
two groups, one composed of the units emanating a large
number of connections and the other of the units having only
a few connections going out of them. In Fig(lbttom), the
connection matrix of this structure is shown.

IV. QUANTIFICATION OF NETWORK PROPERTIES

Now, we focus our attention only on the networks ob-
served in the desynchronized phase, because only in this
phase does network structure change over time, and our in-
terest is in dynamic networks.

In this section, we define two quantitative measures which
reflect the structural and dynamical properties of each type of
network observed in the desynchronized phase. Utilizing
these measures, we determine the phase diagram for each
network structure.

A
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A. Activity of network
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Among the three types of network observed in the desyn-
chronized phase, only the first one has an almost static struc-
ture while the others have active connection dynamics.

As a quantity which reflects this difference, we define the
activity A of the network as follows:

.

HAERCL

L] o | =
I

1 1.Q e EECEINEEERR-CERRSCE : SRR
Alt, T = ——— — > 2 [wil—wy_4]. ’
(N=1)% Tm 7.j n=t FIG. 4. Connection matrices'! of the three types of networks

observed in the desynchronized phase. The scale is chosen so that
The activityA represents the average change of a connectiof€ size of the corresponding square is the same as the grid size
strength overr,, steps. In the above definition, to discard theWhen w’=1. N=50. (Top) The first type. a=3.97, c=0.2.
transient is the time step when the average is started. ~ (Middle) The second typea=3.97, c=0.15. (Bottom) The third

In Fig. 5, the activityA is plotted against andc with a ~ YP€-a=3.97,¢=0.125.

gray scale. A broadband with high activity is visible in the
center of the figure. This band coincides with the area where B. Average connection matrix
the networks of the second and third types, mentioned in the
preceding section, are observed. Outside of this band, the According to the value of the activit, the desynchro-
activity is quite low. This area coincides with the area wherenized phase splits into two areas: one with a network with a
the network of the first type is observed. static structure and the other with a dynamic structure.
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0.15

C o1

0.05

FIG. 5. Gray scale plot of the activiti(t, 7,) of the network, FIG. 6. Gray scale plot of the variancéW,,)? of Wou{ (t, 7).
obtained from the computation of the activity by changing both ofobtained from the computation of the variance by changing both of
the parameters by 0.01=10°, r,=10°. the parameters by 0. 10°, 7,,=10°,

While in the former area only one type of network struc-
ture is observefFig. 4 (top)], in the latter area, two types of m: > W,,i/N,
network structure are observéBig. 4 (middle), (bottom)]. [
To quantify the difference between the latter two networks,

we pay attention to the structural property of the network. anq piot it against andc with a gray scale. The result is
One way to do this is to consider the average connectiogpgwn in Fig. 6. The narrow band of the highW,,)? is
. 6. u

matrix W. W' is defined as follows: seen from the lower left to the upper right of the figure. This
t+ band coincides with the area where the network of the third

Wi (t, 7)) = — z WH type is observed. Comparing this figure with Fig. 5, it is

Tm n=t observed that the lower half of the band of the high activity

- . corresponds to the narrow band of the highi\(,,)%. The
W represents the temporal averagevdf over 7, steps  upper half of the high activity band, wheréW,,)? is rela-
after thetth step. It gives a network structure averaged ovetiyely low, coincides with the area where the network of the

time. second type is observed.
One can detect the existence of some stable structure by

looking at the variance oiV!! over all pairs ofi,j. If con- _
nection strengths change randomly in time,\all will ap- C. Regions

proach the same value and the variancéfwill tend to O, Using the two quantities introduced above, we can divide
as 7 is increased. On the contrary, if the network has somehe desynchronized phase into three regions, with regards to
temporally stable but spatially nonuniform structure, thethe dynamics and the stability of network structure. We call
variance will remain finite even if; is increased to infinity. these three regions the static region, dynamic region I, and
Since the uniform all-to-all connection structure is never redynamic region lI(Fig. 7).

alized in the desynchronized phase, the variancé/éfcan

be considered as an index of the stability of network struc- 0.2
ture.

Recalling that in the network of the third type, strong
connections tend to concentrate on a few colurffig. 4
(bottom], we sum upW" overi to get the total strength of
the outgoing connections of urjitand consider the variance

of this total strength over units. We defilé, , as follows: ¢ 0.1
1 t+7, N N
Wh(t, i) =— 2 > wh=> Wi(t,7,).
Tm =t j=1 =1

This is the temporal average of the total strength of the out-
going connections of unitover 7,,, steps after théth step. 0 . i . . .
We calculate the varianceS(V,,)? of W, overi, 3.7 3.8 3.9 4.0

(W, 02: E (Wi)ut_ W_Om)z FIG. 7. Rough phase diagram with regards to the network struc-
ture, generated according to Figs. 5 and 6. Letters in the figure
represent the followindS, static regionD1, dynamic region ID2,

with dynamic region II.
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1. Static region 0.2

This region is characterized by the low network activity
A. In this region, most units make pairs and each unit is 0.15
connected only with the partner in the pair. Although their
connection strengths hardly change over time, the decompog ¢.1}
sition and the recomposition of the pairs occasionally occur.
Besides those units forming pairs, there remain a few units
that do not form pairs. Their connection strengths change 0.05
rapidly over time.

The dynamics of units forming a pair are not synchro-
nized, but highly correlated, while there is almost no corre-
lation between units that belong to different pairs.

FIG. 8. Gray scale plot of the densiB/(t) of the graph mapped
> D . ion | from the network, obtained from the computation of the density by
- Lyhamic region changing both of the parameters by 0.0£.10°.

This region is characterized by the high activityand the

low (8W,,)2. There is no synchronization between any two i 1
units, and the correlation between units is very low for any 1 Wy = m)
given couple of units. Due to these disordered unit dynamics, di(t)=

connection strengths change intensely. Here, the network 0 (w‘ti<i).
structure seems to be random. N—-1

_ _ This densityD represents the proportion of the actual con-
3. Dynamic region I nections in the graph to all the possible connections in the
This region is characterized by the high activityand the ~ graph withN vertices at theth step.
high (8W,,)2. Similarly to the dynamic region |, there is  In Fig. 8, the densityD is plotted againsa andc with a
neither synchronization nor a significant correlation betweergray scale. The dependence of the denBitgn a andc is
any two units. Here the network possesses a tempora”guite similar to that of the activityA. This means that the

stable structure, although the connection strengths change €€nsity is high in the dynamic regions and low in the static
intensely as in dynamic region I. region. The difference between the network structure in the

dynamic regions | and Il is not clear at this point.
The symmetryS of a graph is defined as follows:

V. NETWORK STRUCTURE

ij
In this section, we analyze the structure of the network E si(v)
guantitatively. For this purpose we map the network structure S(t)=
to a graph. We digitize each connection strength into a binary E dil (t)

value. If the strength of a connection exceedNH(1), we
assign the value “1” to that connection. Otherwise, the value

“0” is assigned. The threshold value N 1) adopted here 1 Wi ji
is the value which a connection takes when a unit connects si(t)= UN=1" "t N-1
uniformly to all the other unit§18]. Hence, the connection 1 0 (otherwise.

means that the correlation between the units relating to the

connections is larger than the average case with a unifornthe symmetryS represents the proportion of the reciprocal

connection. The se¥ of units and the sefE of the connec-  connections to all the connections in the graph atthetep.

tions with the value 1 define a graph reflecting the structure |y Fig. 9, the symmetnBis plotted againsa andc with a

of the network in our system. Sine€’ is not always equal gray scale. The dependence of the symm8ton a andc is

to w!" in our model, the resulting graph is a directed graph.amost opposite to that osW,,)2. The symmetry is high in
the dynamic region | and low in the dynamic region II.
Hence, the networks in the dynamic regions | and Il have

A. Global structure different characteristics not only in the stability of the struc-
Using this graph, we compute two quantities that reflecfure but also in the structure itself.
the global feature of the network structure: the denBitgnd
the symmetryS of the graph. B. Local connectivity

The densityD of a graph is defined as follows: To reveal a more detailed network structure, we focus on

indegree and outdegree of each unit in the graph. Indegree is
1 . . ) )
D(t)=——— >, di(t), the number of connections going out of a unit and outdegree
is the number of connections arriving at a unit.
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0.02 = \/\\'\
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a 0.02 f }
FIG. 9. Gray scale plot of the symmeti§(t) of the graph 0 -~
y P y IS() grap 0 10 20 30 40 50 60 70 80 90 100

mapped from the network, obtained from the computation of the

1. Static region

symmetry by changing both of the parameters by 0t&110°. degree
014 A outdegree
In the following, we explain the structural properties of indegree -
the networks observed in the three regions in the desynchro 012 i
nized phase according to the analysis of the distributions of | | i
indegree and outdegree. .
0.08 bl
A

distribution

As mentioned above, most units form pairs in this region.§ 9% [/
Hence the distributions for both of the indegree and the out- / \
degree are mostly concentrated on the value 1, and have 0.04 / h
very sharp peak at this value. 1

0.02

2. Dynamic region | o bt -
0 10 20 30 40 50 60 70 80 90 100

In Fig. 10(top), the distributions of the indegree and out- degree
degree of the network observed in the dynamic region | are
shown. The peaks of both distributions are almost at the FIG. 10. Distributions of the indegree and outdegree of the
same position, while the distribution of the indegree has &raph. Solid line: outdegree. Broken line: indegréé=100, a
smaller variance and a higher peak than the outdegree distri=3-97,¢=0.15. (Top) Distributions of the indegree and outdegree
bution. This difference is due to the normalization of the total°f the units in the graph mapped from the networks at tfentistep
incoming connection strength. Both distributions are well ap-°f 100 trials with different initial conditionsBottom) Distributions
proximated by the normal distributiomot shown, which of the indegree and outdegree of an arbitrarily chosen unit in the
implies that the units are randomly connected. Note thaE(raph mapped from the networks at the (400)th to the (2.0

these distributions are calculated from snapshots of the con- 10)th step.

nection matrices. Hence, they carry no information about th‘foeak at 0, and the other from about 16 to about 68, which
temporal aspect of the network structure. _ has the shape of a normal distribution with its peak at about
To reveal the temporal properties, we count the indegregq
and the outdegree of one arbitrarily chosen unit for a long  This implies that units are separated into two groups. The
time and compute their distributions. The result is shown i”proportions of the number of the units in the group with the
Fig. 10(bottorﬁ. Comparing it V\_nth _the previous figure, one |,wer outdegree and that with the higher outdegree to the
can easily see that these distributions take almost the samg, o system are 0.82 and 0.18, respectively.
shape, which implies that the network structure changes al- g mentioned above, these distributions tell nothing about
most randomly. the temporal change of the network structure. Hence, it is not
clear whether the separation of units is stable over finee
3. Dynamic region Il the groups do not exchange their members with each Jother

In Fig. 11, the distributions of the indegree and the out-Or Not. To answer this question, we study the evolution of
degree of the network observed in the dynamic region I ardVout- _
shown. In Fig. 12, the time series ofV,, is plotted for alli at

Though the indegree distribution is similar to that in the every 10 steps, where the units who#é , at the 10th step
dynamic region |, their outdegree distributions are quite dif-exceed 2 are plotted with red lines and the remaining units
ferent. The outdegree distribution in the dynamic region Il isare plotted with green lines. Though the assignment of the
given by the superposition of two components: one rangingolor to each unit is determined only by the valuevd,; at
from O to about 16, showing exponential decay from thethe 10th step, almost all of the units in the group with the
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T 1 gy
outdegree —— e
ndegree --—---- 3= e S S —— 3

0.8

0.1

o \
V. W\A 0s N\

0.3

0.01

distribution
correlation

0.001

0.2

0.1  ¢=0.15 (dynamic region | \
i i ¢=0.125 (dynamic region Il) —-—-
0.0001 4 . 0 L L :

0 10 20 30 40 50 60 70 80 90 100 10° 10? 102 10° 10* 10° 10° 107
degree T

FIG. 11. Distributions of the indegree and outdegree of the units  FIG. 13. Plot ofCg(t,7r,7) againstr;. Note the logarithmic
in the graph mapped from the networks at théttiGstep of 100  scale used in the horizontal axis= 10°, 7,,=10*. N=100. Solid
trials with different initial conditions. Note the logarithmic scale line: dynamic region | §=3.97,c=0.15). Broken line: dynamic
used in the vertical axisN=100, a=3.97,c=0.125. region Il (a=3.97,c=0.125).

higher outdegree are plotted with red lines over much longeThe threshold value 1.0 used here is the average of the total
time steps. This means that most of the units with highebutgoing connection strength of a unit. Then, we define the
Wq, Values at the early stage of the separation still havewtocorrelation functiorCs, betweenb;, and b}, , as fol-
higherWy,, values. Hence it is concluded that the separationgys: '
of units is highly stable.

Next we confirm the separation of units more quantita- 1 N
tively by defining an appropriate measure for the separation. Cse;{t,TWﬂ):N 2 C'Sergt,rm,n),
Here we define an autocorrelation function relating to the =1
separation of units in the following way.

. t+ 71y
First, we define a binary variablg,, which takes 1 if the +z b b
unit i belongs to the group with higher outdegree, antl i & Tt .
otherwise, i.e., Cse;{thmaTI):W:T_ nEt bnbn+f,-
. m =
N > by?
1 ( > wﬂzl.o) "
bl = J;l We can measure the stability of the separation by looking at

A - how C.,decays ag gets larger.
-1 (le WL'<1.0). The glot of Cgep @againstr; is shown in Fig. 13. The de-
pendence ofg.,on 7 in the dynamic region | and the dy-
‘ namic region Il is drawn with the solid and the broken lines,
respectively. In the dynamic region Il, the correlation decays
very slowly and it remains very strong, namely, 0.84, even
for the lag of 18 steps, while in the dynamic region I, the
correlation decays to almost zero within®16teps. Hence,
the separation of the units is highly stable in the dynamic
region Il, while the separation is unstable, or never occurs, in
the dynamic region 1.

Higher Wout gr‘oup
ower Wout group

Wout

C. Temporal evolution of the network structure

In this section, we study the time course of the formation
of the network structure in more detail. As a simple way to
illustrate network structure, we adopt the following method.
First, after the temporal evolution for certain steps, a graph is

FIG. 12. (Colon Temporal evolution oM. (t, 7). Each line generated with the method introduced above. Then, we com-
represents the time series W, The time series for all are  pute the indegree and the outdegree of each unit from the
superimposed. The red lines correspond to the units wiidggat ~ graph, and calculate their average separately for each unit
the 10th step exceed 2 and the green lines to the rest of the unit§ver a certain period of time steps. These averages of inde-
Tm=10°, N=100,a=3.97,c=0.125. gree and outdegree are plotted on a two-dimensional plane

00 01 02 03 04 05 06 07 08 09 10
107 time steps
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indegree indegree 0 3 b %%
60 © 60 75 8 85 9 95 10 105
c (d) i

50 50 indegree
g 40 x g 40 %R FIG. 15. Degree scattergram of the network in the dynamic
2 30 2 50 X‘% region Il for the period of 1000 steps starting from théthGstep.

X Xy . . . .

% B % 3 Note that the scales in both axes are different from those in Fig. 14.

2 2 % N=50,a=3.97,c=0.125.

10 ¥ 10 ;

0 0 % ration of the units is clearly seen.

0 5 10 15 20 25 30 0 5 10 15 20 25 30 Next, we show the degree scattergrams of the network in

indegree indegree the dynamic region | in Fig. 16. As in the dynamic region II,
60 80 indegree and outdegree slowly decregSigs. 16a)—16(c)].
5o 1 o0 L ) However, the distribution of the points is sharper than in the
& X x dynamic region Il. After slowly decreasing for a whilEigs.
g 40 ¥ g 40 X 16(b) and 16c)], the degrees hardly change their distribu-
5 % 5 2 ' [
g 30 35 g 30 tions after the 10 000th stdfrigs. 16d)—16f)].
3 20 X% 3 20 }f The positive correlation between indegree and outdegree
wik ot 5 is observed again, though it is much weaker than in the dy-
10 % 10 & namic region |. The existence of such a correlation in this
0 TR —— T x1 o 25 3 region is natural, considering the high symmetry of the net-
indegres ° indesree ° 3 work in this region. Still, the deviation from the perfect sym-

metry, i.e., the deviation of the points from the line where
FIG. 14. Degree scattergrams of the network in the dynamicoutdegree is equal to indegree drawn in Fig(fl6s more
region Il.N=50,a=3.97,c=0.125.(a) From the Oth to the 1000th interesting. The units with larger outdegrees tend to take a
step.(b) From the 1000th to the 2000th stép) From the 5000th to  much larger outdegree, which suggests the existence of a

the 6000th step(d) From the 10000th to the 11000th stee)  positive feedback mechanism to amplify the deviation of
From the 50 000th to the 51 000th stéf). From the 100 000th to outdegree from the average.
the 101 000th step.

with the abscissa for indegree and the ordinate for outdegree. VI. MECHANISM OF STRUCTURE FORMATION

We call this type of plot a “degree scattergram” here. We | this section we reveal the relationship between unit
study the temporal change_ of the r_1etwork structure from th‘?jynamics and the formation of the network structure.
degree scattergrams for different time spans. _ In this section, we fix the parametarto 3.97 and con-

In Fig. 14, the degree scattergrams of the network in th&jger the dependence of the network structure only on the
dynamic region Il are plotted for different time spans. In theparametec, for simplicity. Needless to say, the results drawn
initial state, all units have the same indegree and outdegreg,e applicable to the case with the other values.of
namely,N—1. Right after the start of the simulation, inde- | Fig. 17, the dependence of the activiyf the network
gree and outdegree rapidly decrease. In the plot over 0—100%,4 (8W,,)2 onc is shown fora=3.97. From these figures,
steps[Fig. 14a)], indegree and outdegree for each unit scati; can pe seen that, fa=3.97, the static region lies in the
ter around 20. The average of both degrees keeps decreasipgeryals 0<c<0.075 and 0.1&c, the dynamic region | in

slowly, while the variance of the outdegree gets larger anghe interval 0.145: c=<0.19, and the dynamic region Il in the
larger[Figs. 14b) and 14c).] The distribution of outdegree interval 0.075=c=<0.145.

still gets broader after the 10 000th step, while the average
and the variance of the indegree get smafleigs. 14d)—
14(f)]. Throughout this process, there exists strong positive
correlation between indegree and outdegree. First, we study how the boundary between the static and
From about the 50 000th step, units start to split into twothe dynamic regions is determined in relation to the unit
groups|[Figs. 14e) and 14f).]. The separation gets clearer dynamics.
with time. In Fig. 15, the degree scattergram for the period of As mentioned above, most units form pairs in the static
1000 steps starting from the &8 step is shown. The sepa- region. The units forming a pair have connections only be-

A. Boundary between the static and the dynamic regions
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@ (b) 3
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AVAYA T
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9 30 3 30 B 04
8 x g g o = <
© 20 © 20
% B X 0
0 E 10 0 0.05 0.1 0.15 0.2
] c
0 bl 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30 FIG. 17. Dependence of the activi#(t,r,) of the network
indegree indegree (top) and the variance ofW, (t,7,) (bottom) on c. t=1C, 7,
60 60 =10, a=3.97.
(e) (U]
50 50 . .
w0 In the intervals 6<c=<0.075 and 0.185¢=0.223, which
g ¥ y 8 lie within the desynchronized phase, the difference between
g 30 g the two units is not zero but changes chaotically over time.
3 o 3 5 However, it stays close to zero over a large proportion of
0 10 time steps, as can be seen from the dense points around zero
: in Fig. 18. During the time steps satisfyi:xﬁ*wxﬁ, the cou-
00 5 10 15 20 25 =0 %0 5 10 15 20 25 30 pling between the two units is amplified, which overcomes

indegree indegree the depression of the coupling during the time steps where
_ _the difference is large. Hence the pairing structure is stable
FIG. 16. Degree scattergrams of the network in the dynamitere, The static region coincides with these intervals.
region I.N=50,2=3.97,c=0.15.(a) From the Oth to the 1000th  op the other hand, in the interval 0.0Z6=<0.185, the
step.(b) From the 1000th to the 2000th step) From the 5000th to ifference takes much larger values. In particular, in the in-
the 6000th step(d) From the 10 000th to the 11 000th step) terval 0.13<c=0.18. it shows . P .
. =0.18, period-2 oscillation. This is
From the 50 000th to the 51 000th sté€f). From the 100 000th to Ue to the antiphase oscillation of the two units. Such an
the 101 000th step. The broken line represents the line where Ougntiphase oscillation. however. is observed only. when we
degree is equal to indegree. isolate a single pair from the system. In the original system

tween each other. Accordingly an interaction between diﬁ‘er—where the connection strengths can vary, if such an antiphase

ent pairs hardly exists. Hence, we can roughly grasp the be-
havior of the whole system in the static region by looking
only at the dynamics of a single pair. The dynamics of a
single pair obeys the following equations:

X2, 1= f((1—c)x%+cxd),

X0-x1

Xt =f((1—c)xt+cxD),

where x® and x} represent the state variables of the units
forming a pair.

In Fig. 18, the bifurcation diagram of the dynamics of a
pair against for a=3.97 is shown. The difference between
x? and x} is plotted againstc within the interval 0<c
<0.3. Forc=0.223, the difference is 0, which means that
the dynamics of the units are synchronized. This range of
corresponds to the ordered phase. Needless to say, the inter-FIG. 18. Bifurcation diagram of the dynamics of a pair for
val 0<c=0.223 corresponds to the desynchronized phase.=3.97. The difference betwees} andx} is plotted against.

0 0.05 0.1 0.15 0.2 0.25 0.3
[
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FIG. 19. (Color (Top) Temporal change of the correlation be- . g5
tween an arbitrarily chosen untinit 1) and the other units in the
system. The correlations between units’ dynamics in the past ten
steps are plotted in a color scale at every step. Green and red colors
correspond to positive and negative correlations, respectively, while 92
the brightness of the colors shows the strength of the correlation. 0.1 e
N=50,a=3.97,c=0.15. (Bottom) Time series of the dynamics of 0 i

the chosen unitunit 1 in the top figurg 0 0.05 0.1 0.15 02
o]

04 |
03 |

oscillation occurred, the connection between the units form- g, 20. (Top) The dependence of the average interval of TGH

ing the pair would be weakened rapidly, which results in theéand (sW,,)2 on c. (Bottom) Bifurcation diagram of the dynamics

decomposition of the pair. Hence, in this interval, pairs areof a unit in the ordinary GCM(AIl connection strengths are fixed
unstable. The dynamic regions correspond to this intervals.and identical.

B. Boundary between the dynamic regions | and Il nately. According to the phase of this oscillation, units are

Next, we study the boundary between the dynamic regiomaturally separated into two groups: when the units of one
| and the dynamic region II. group take high values, the others take low values, and vice
In the dynamic regions, each unit is connected to manyersa. This separation, however, is not stable because each
other units in a complex manner. Therefore, it is impossibleunit sometimes fails to cross over the fixed point, which
to estimate the whole system’s behavior only from the dy-turns the phase to the opposite.
namics of some particular units. Here, we trace the dynamics The period with weak a correlation is nothing but the
of an arbitrarily chosen unit, compute the correlation be-movement of a unit from one group to the other. As a unit
tween the chosen unit and the other units’ dynamics over gwitches to the other group of the opposite phase, from
short time period, namely ten steps, at every step, and plgfigh-low-high- - - to low-high-low- - -), the sign of the cor-
their temporal change. o _ relation changef19].
_InFig. 19, the dynamics of an arbitrarily chosen unit and e call this movement of a unit from one group to the
its correlations with the oyher units in the qynamlc region lgiher a “trans-group hopping{TGH). TGH is closely re-
are shown. The correlations are plotted in a color ScaleIated to the temporal change in correlations between units.

v_vhere green or red represent's a positive or negatiye c_orrela],he dynamics of TGH are expected to have a strong influ-
tion, respectively, and the brightness of the color |nd|catesence on the formation of network structures
the magnitude of the correlation. '

The temporal change in the correlations has the foIIowingr To investigate the _dynamlc characteristics of T.GH’ we
characteristics. ocus on the average interval between two successive TGHSs.

(1) A strong positive(or negative correlation lasts for a The mtgrvals are measun?d in the .ordln.ary GCM, where all
certain number of steps, followed by a short period with gconnection strengths are fixed and identical, because we now

weak correlation. want to obtain the expected value of the interval of TGH in
(2) After this period, the sign of the correlation changesth€ network with a certain structure. _
for most cases. In Fig. 20(top), the dependence of the average interval of

The simultaneous appearance of the short period with ZGH onc is plotted, as well as the dependence 6\(,)*
weak correlation for all units is accompanied by the ap-on c. The average interval of TGH shows a rapid increase
proach of the units’ state variables to thenstabl¢ fixed  aroundc=0.15, where §W,,)? shows a rapid decrease.
point of the logistic map (0.74. . .). Note that the dynam- This value ofc is nothing but the transition point from the
ics of the logistic map here are two-band motions, i.e., thalynamic region Il to the dynamic region I. This suggests that
unit takes values larger or smaller than the fixed point alterthe change in the average interval of TGH leads to the
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change in the network structure from the region I to I, which 140 140

will be discussed below. z 120 @ - 120 [
To see what change in unit dynamics causes the sudde,_ 100 ‘é 100

change in the TGH frequency, we plot the bifurcation d|a-r§ 80 Tg 80

gram of a unit in the ordinary GCM, which is used to calcu- 2 5 2 o

late the average TGH interval, agaimsfor a=3.97 in Fig. g 9

20 (bottom). 5 5 “ &
Forc=0.15, the unit shows a two-band chaos and hardly ® 20 [~ ° 20

(=1

o L&
3 4 5 6 7 8 01 2 3 4 5 86 7 8

Wout Wout

takes a value around the fixed point. Hence, it can be saic
that TGH hardly occurs in the two-band chaos state. In fact,
the average interval of TGH is very long here. Arouad
=0.15, band merging occurs and the unit shows a single- 140 © N 140 @
band chaos foc=<0.15, and the average interval of TGH x 120

rapidly decreases. Therefore, it can be concluded that thé; 100
sudden change of the TGH frequency is caused by the blfurg
cation of the unit dynamics from the two-band chaos to the g
single-band chaos.

(=)
-
N

average interval of TGH
XXX
X< K x

average in

C. Feedback between dynamics and structure

6 7 8 01 2 3 4 5 6 7 8

In this section, we study the relationship between unit "
out

dynamics and the formation of network structure, focusing
on the relationship between TGH and the structure formation 140 140
in the dynamic region 1. 120 |©© 120 1 ®

Here we compute the average interval between two suck
ceeding TGHs of each unit in the network. The TGH interval g
of each unit is measured with the following method. After
discarding the transient over the first steps, we fix the
connection strength, allowing only for the evolution of the %
state variables. Then we measure the TGH intervals of eacl T 20%”‘
unit for a certain time period anc_i compute the average sepa  ° 7, 2 4 5 & 7 & Oy 2 s 4 56 7 s
rately for each unit over the period. _ Wout Wout

We plot the obtained average interval agaiigf, for _ o
each unit to investigate the influence of the network structure  F'G- 21. Plot of the average intervals of TGH agaikigy,,.
on unit dynamics. The plots for six different valuesmfare ~ =26h_point in a figure corresponds to each urlit=50,a
shown in Fig. 21. Initially, the intervals are almost the same_ ;07 ¢=0-125. (8 7=100. (b) 7y=1000. () 7=5000. (d) 7y
for all units[Fig. 21(a)]. Then, the intervals start to differ by ~ 0 °00-(®) 71=50000.(f) 7=100000.
units [Figs. 21b)-21(d)], where a positive correlation be-
tweenW'out and the intervals is observed. A unit with a larger
W, value has a smaller rate of TGH. At later times, the
correlation gets weakégFigs. 21e) and 21f)]. Note that the
period when the correlation betwe&f, , and the TGH in-

100
80
60 %,
40

| of
=
=3
(=3
X
XX

xR
%

average interval
average interval of TGH

X
X
X

20

In Fig. 22, the average correlati@ is plotted against the
average interval of TGH for=10000. There is a clear
relationship betweef' and the TGH interval. A unit with a

tervals is strongest coincides with the period when the cor- o4
relation between indegree and outdegree is strongesi 04 * * X *
namely, from the 5000th step to the 10000th sfEfms. 0.35 A "
14(c) and 14d)]. e o

This observation shows how network structures influenceg 0. * .
the frequency of TGH. Next, we consider the opposite influ- g A
ence, i.e., the influence of unit dynamics on the formation of & 02 A
the network structure. Here we measure the correlation beg',’ 02 LI
tween units, instead of the network structure, since the cons s
nection between units with a strong correlation is amplified  0.15 e
in our model. . 01 i,

We measure the average correlat©@hof unit i with all ’ >
the other units’ dynamics, defined as follows: 0.05 +

0 20 40 60 80 100
i 1 |<X|nX=1> _ <X'n><XL>| average interval of TGH
c= N=11F (X2 —(x )2\ (xt2) = (x})? FIG. 22. Plot of the average correlati@ against the average

. interval of TGH. Each point in the figure corresponds to each unit.
C' is computed by fixing the connection as mentioned abover;=10% N=50,a=3.97,c=0.125.
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longer TGH interval has a stronger average correlation. Be- 1

- . . lag=1.0x10% ——
causeC' gives a measure of the degree of the increase in S

lag=1.0x103

(I
connections from a unit, this result means that a unit with a lag=1.0x106 -

. X . . 08 lag=2.0x10,
longer TGH interval is more likely to strengthen its connec- lag=3.0x10" ——=—
tions.

Now, we have confirmed the bidirectional influence be- ¢ 0.6
tween unit dynamics and the formation of the network struc—%
ture. A unit with a smaller TGH rate grows its connections § oa

o E

more rapidly, and a unit with stronger connections decrease:
the rate of TGH. This mutual reinforcement amplifies the
difference among the connection strengths of units. One con 4,
sequence of this amplification is the separation of connec- : 5
tions in the dynamic region Il. T e e x

In the dynamic region |, the correlation among units is 0 02 04 06 08 ”

generally strong, as is confirmed by the long TGH interval ' s '

[Fig. 20(top)]. Hence, the units are kept from separating into

groups. The consequence of the amplification is seen only in FIG. 23. Plots ofCg.(t, 7, 7) againsts for different values of
the deviation of the indegree and outdegree from perfecti. t=10° 7,=10". N=100.

symmetry.

In the dynamic region II, the correlation among units isthe dynamic region | but the separation of units is stable over
weak due to the frequent TGH. Therefore, the amplificationjme.
of the difference among the connection strengths of units Boundaries between the regions are related to the change
works effectively, which results in the separation of unitsjy the type of unit dynamics. Across the boundary between
into the two groups. Now the origin of this separation isthe static region and the dynamic regions, the stability of
understood as the positive feedback process between unjhtiphase oscillating dynamics changes. Switching of the
dynamics and network structure. phase of two-band oscillations appears in the dynamic re-
gions, leading to trans-group hoppitigGH). The boundary
between the dynamic regions | and Il is given by the change
in the frequency of TGH.

We studied basic properties of coupled maps with variable The mechanism of the structure formation in the dynamic
connection strengths, by adopting a version of globallyregions is clarified as a mutual reinforcement between the
coupled mapgGCM’s) as our model. Differently from the unit dynamics and the connection dynamics. Within the unit
ordinary GCM, our model does not have the partially or-dynamics, correlations with other units start to differ by
dered phase in the parameter space. This is due to the stabirits, leading to the difference in connection strengths. In
lization of clusters by the change of connections. In ourturn, this difference in connection strengths leads to the dif-
model, once a cluster is formed, its interaction with the resference in TGH frequency among units, which leads to the
of the system tends to vanish because the connections bdiference in correlations. Hence, the differences among con-
tween units within and out of the cluster are weakened. Thigiection strengths are amplified, which results in the separa-
stabilizes the clusters. tion of units in the dynamic region II.

In the coherent and the ordered phase, connection In this mechanism of structure formation, it is essential
strengths are fixed asymptotically because of the synchronthat the unit dynamics have the two states characterized by
zation between units. In the desynchronized phase, there ibe phase of oscillation. Here, the rate of the change between
no synchronization between any pair of units, and the conthe states, rather than the values of the unit variables, is
nection strength can change in time. In spite of chaotic dyimportant for the structure formation. We expect that this
namics of units, however, connection matrix has a certairobservation can be applied to any network system with unit
structure. dynamics. Indeed, a network of units with excitable states

We classified the network structure into three types, andnd variable connection strength shows unit separation of the
partitioned the desynchronized phase into three regions, i.esame kind as in the present model, in spite of the significant
the static region, the dynamic region I, and the dynamic redifference in the unit dynamics. In our modgind this net-
gion Il, corresponding to each network structure. In the statievork of excitable statgsunit dynamics take only two pos-
region, most of the units form a pair, and a unit in a pair issible states that are clearly distinguished. What kind of net-
connected only with its partner. Change of connectiorwork structure is formed in the system composed of units
strengths is slight and the decomposition and recompositiowith multiple states is an interesting question.
of pairs hardly occur. In the dynamic region I, units are con- Throughout this paper, we have fixed the valuedofo
nected in a random manner and temporal change of connef:1. Sinced represents the degree of plasticity of the con-
tions is large. In the dynamic region IlI, units split into two nection, it is assumed that the stability of the separation de-
groups: one group composed of units with a large number gbends on the value of. In Fig. 23,Cg,is plotted against
outgoing connections and the other units with a few outgoindor different ;. For & larger than 0.5C.,decays to almost
connections. Temporal change of connections is large as irero, while for & smaller than 0.5, a finite value e,

VII. SUMMARY AND DISCUSSION
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remains for significantly large, namely, 16 steps[20]. to the emergence of opinion leaders. Such a correspondence
This result means that a dynamic network with a highly plasseems to suggest that leadership in a group can emerge
tic connection change is unable to preserve structural inforthrough the dynamics of a relationship among the members,

mation. even if there is no difference among their personalities.

The separation of units into the two groups means the Finally, we note that the separation of units into the two
appearance of units with much more influence on the dynanmgroups leads to the robustness of the network against random
ics of other units. This can be regarded as the spontaneodigilures. In Ref.[16], Albert et al. showed that scale-free
emergence of the “controlling part” within the system. Such networks are highly tolerant against random failures, and dis-
emergence may be related to the origins of hierarchy, divicussed that this robustness of scale-free networks is rooted in
sion of labor, and leadership in some living and social systheir extremely inhomogeneous connectivity distribution,
tems. Indeed, because of the simplicity of the model and th&here the majority of nodes have only a few links. The same
universality among globally coupled maps, it is expected thatype of inhomogeneity of connectivity is also observed in our
such an influential group of units generally emerges in netsystem, implying such a robustness against random failures.
works whose connections change in a manner governed b‘ylbert et al. used the model of preferential attachment to
the relationships between its dynamic elements. generate scale-free networks. In their model, a new edge is

As discussed in Ref15], one example of such networks connected preferentially to the units with high connectivity.
is the neural network of newborn organisms. Here we quotd hough we did not explicitly adopt this kind of rule for
another example, i.e., networks of communication. With theconnection change in our model, a connection change of a
growth of mass communication and the Internet, it is gettingsimilar nature spontaneously emerged from the interplay be-
easier to broadcast information, while the cost of filtering oftween unit and connection dynamics. The feedback mecha-
significant information from the large amount of useless in-hism of the separation of units in our model may supply the
formation is getting larger and larger. Since, in such situadynamical basis for the preferential attachment in dynamic
tions, one cannot examine all the information available, itgrowing networkg21].
becomes necessary to focus attention on a certain portion.

This is the situation where our model seems well suited. This work was partially supported by the Special Postdoc-
Here, the emergence of the influential group may correspontbral Researchers Program of RIKEN.
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